Measuring implant stability with the W&H Osstell ISQ module

By DTI

BURMOOS, Austria: With the exclusive integration of the Osstell ISQ (Implant Stability Quotient) module, W&H is offering users a unique system for measuring implant stability. In combination with the company’s improved Implantmed functionalities, the Osstell ISQ module ensures added certainty and reliability in the evaluation of the treatment success by offering the surgeon the ability to monitor the status of osseointegration continuously and document it, along with the torque.

Determining the optimal time to load an implant is complex, since one must take into account all key parameters and the patient’s risk factors. The retrofittable Osstell ISQ module allows the surgeon to benefit from a unique system for measuring implant stability. While Implantmed’s integrated automatic thread-cutter function and the torque control help the dentist during placement of implants, the ISQ module makes it easier to determine the optimal loading time.

According to the company, the stability value measured by the device helps improve the success rate of quality. With this measuring not only pos - mine the value of im to more certainty and reliability in the evaluation of the treatment success by offering the surgeon the ability to monitor the status of osseointegration continuously and document it, along with the torque.

Determining the optimal time to load an implant is complex, since one must take into account all key parameters and the patient’s risk factors. The retrofittable Osstell ISQ module allows the surgeon to benefit from a unique system for measuring implant stability. In combination with the company’s improved Implantmed functionalities, the Osstell ISQ module ensures added certainty and reliability in the evaluation of the treatment success by offering the surgeon the ability to monitor the status of osseointegration continuously and document it, along with the torque.

According to the company, the stability value measured by the device helps improve the success rate of quality. With this measuring not only pos mine the value of im to more certainty and reliability in the evaluation of the treatment success by offering the surgeon the ability to monitor the status of osseointegration continuously and document it, along with the torque.

The new implant is characterised by greater safety, ease of use, high precision and flexibility in application.

Ivoclar introduces new dental platform

By DTI

SCHAAN, Liechtenstein: With the launch of a new online platform, dental manufacturer Ivoclar Vivadent aims to provide dentists and dental technicians with continuous updated information and news about industry trends and the latest products. Through two profession-specific blogs hosted on the platform, the company further seeks to answer specific user questions and foster a lively exchange within the dental community.

“The main focus of the blog is the readers’ benefit—both for daily work as well as fundamental questions, for example good laboratory or dental office strategies. Fascinatingly presented and with a wide variety of topics, the contributions are supplemented on a weekly basis,” said Nicole van Oers, Communications Director at Ivoclar Vivadent.

The topics addressed in the respective blogs cover different areas of dentistry, such as aesthetics, digital development and materials, and often provide additional content, including downloads of scientific publications and explanatory videos.

In its present form, the platform has been online since September 2016. The blogs are published in five languages (English, German, French, Italian and Spanish) and can be assessed at blog.ivoclarvivadent.com. Users who subscribe to the free blog newsletter will be informed as soon as new posts are available, the company stated.

Glass ionomer luting cement
- High level of adhesion
- Highly biocompatible, low acidity
- Continuous fluoride release
- Precision due to micro-fine film thickness
- Translucent for perfect aesthetic results
- High compressive strength and low solubility

Light-curing micro-hybrid composite
- Applicable for various indications (Universal for all cavity classes)
- Attributes which ensure aesthetic results
- Excellent physical properties
- Perfect for durable and long-lasting fillings
- High-filler content
- Packable consistency (also available as Composan LCM flow)

Visit www.promedica.de to see all our products
MIS announces release of B+ implant surface

By DTI

BAR-LEV, Israel: This March, MIS Implants Technologies is officially launching its latest in implant engineering, the B+ implant surface treatment, at the International Dental Show in Cologne. The B+ layer bonds chemically with the surface of the titanium dioxide of an implant and integrates perfectly with existing and newly forming bone, achieving greater initial osseointegration and longer-term stability.

With the initial results from testing of the B+ surface, it was discovered that, for the first time, specific biochemical bonding can be obtained already at the very early healing phase after implantation,” Aronsson said. MIS was very excited to learn about these discoveries and immediately saw the potential for a major breakthrough. Having been seeking a suitable company to partner with, Aronsson and his team were equally enthusiastic about embarking on the commercialisation phase with a company able to achieve rapid implementation in clinical practice and with a strong position in the market to advance their product.

Most recently, MIS has launched a user experience project involving 250 participants worldwide, who will be placing ten implants each with the B+ surface and reporting their experiences. The results of studies conducted by Aronsson and his team are extremely promising and both partners are exploring future applications for this advancement.

Dr. Björn-Owe Aronsson, who developed this unique surface together with his team at Nano Bridging Molecules, has presented case studies in which B+ proved very efficient in maintaining the bone level over time. This is particularly beneficial for patients with compromised bone healing and poor blood supply. The specific bone-bonding properties of the surface have proved to produce greater fixation of the implant in the early stages post-placement, as well as greater stability later on.

Aronsson explains: “Titanium is used as implant material due to its inertness and high acceptance by the body. Over the years, however, a wish for faster and more predictable integration with the bone has been driving research on the importance of the surface structural and chemical properties.”

The surface consists of a monolayer of multi-phosphonate molecules. These have a very high affinity to titanium dioxide, enabling a true covalent bond. The unique properties of this layer also make it extremely hydrophilic, which facilitates the colonisation of cells on the surface naturally. Research has even shown that blood vessels grow directly into the surface of the implant, which is unaffected by the oral environment and has been proved very stable in different pH levels.

,” Aronsson said. MIS was very excited to learn about these discoveries and immediately saw the potential for a major breakthrough. Having been seeking a suitable company to partner with, Aronsson and his team were equally enthusiastic about embarking on the commercialisation phase with a company able to achieve rapid implementation in clinical practice and with a strong position in the market to advance their product.

Most recently, MIS has launched a user experience project involving 250 participants worldwide, who will be placing ten implants each with the B+ surface and reporting their experiences. The results of studies conducted by Aronsson and his team are extremely promising and both partners are exploring future applications for this advancement.

Dr. Björn-Owe Aronsson, who developed this unique surface together with his team at Nano Bridging Molecules, has presented case studies in which B+ proved very efficient in maintaining the bone level over time. This is particularly beneficial for patients with compromised bone healing and poor blood supply. The specific bone-bonding properties of the surface have proved to produce greater fixation of the implant in the early stages post-placement, as well as greater stability later on.

Aronsson explains: “Titanium is used as implant material due to its inertness and high acceptance by the body. Over the years, however, a wish for faster and more predictable integration with the bone has been driving research on the importance of the surface structural and chemical properties.”

The surface consists of a monolayer of multi-phosphonate molecules. These have a very high affinity to titanium dioxide, enabling a true covalent bond. The unique properties of this layer also make it extremely hydrophilic, which facilitates the colonisation of cells on the surface naturally. Research has even shown that blood vessels grow directly into the surface of the implant, which is unaffected by the oral environment and has been proved very stable in different pH levels.

,” Aronsson said. MIS was very excited to learn about these discoveries and immediately saw the potential for a major breakthrough. Having been seeking a suitable company to partner with, Aronsson and his team were equally enthusiastic about embarking on the commercialisation phase with a company able to achieve rapid implementation in clinical practice and with a strong position in the market to advance their product.

Most recently, MIS has launched a user experience project involving 250 participants worldwide, who will be placing ten implants each with the B+ surface and reporting their experiences. The results of studies conducted by Aronsson and his team are extremely promising and both partners are exploring future applications for this advancement.

Dr. Björn-Owe Aronsson, who developed this unique surface together with his team at Nano Bridging Molecules, has presented case studies in which B+ proved very efficient in maintaining the bone level over time. This is particularly beneficial for patients with compromised bone healing and poor blood supply. The specific bone-bonding properties of the surface have proved to produce greater fixation of the implant in the early stages post-placement, as well as greater stability later on.

Aronsson explains: “Titanium is used as implant material due to its inertness and high acceptance by the body. Over the years, however, a wish for faster and more predictable integration with the bone has been driving research on the importance of the surface structural and chemical properties.”

The surface consists of a monolayer of multi-phosphonate molecules. These have a very high affinity to titanium dioxide, enabling a true covalent bond. The unique properties of this layer also make it extremely hydrophilic, which facilitates the colonisation of cells on the surface naturally. Research has even shown that blood vessels grow directly into the surface of the implant, which is unaffected by the oral environment and has been proved very stable in different pH levels.

,” Aronsson said. MIS was very excited to learn about these discoveries and immediately saw the potential for a major breakthrough. Having been seeking a suitable company to partner with, Aronsson and his team were equally enthusiastic about embarking on the commercialisation phase with a company able to achieve rapid implementation in clinical practice and with a strong position in the market to advance their product.

Most recently, MIS has launched a user experience project involving 250 participants worldwide, who will be placing ten implants each with the B+ surface and reporting their experiences. The results of studies conducted by Aronsson and his team are extremely promising and both partners are exploring future applications for this advancement.

Dr. Björn-Owe Aronsson, who developed this unique surface together with his team at Nano Bridging Molecules, has presented case studies in which B+ proved very efficient in maintaining the bone level over time. This is particularly beneficial for patients with compromised bone healing and poor blood supply. The specific bone-bonding properties of the surface have proved to produce greater fixation of the implant in the early stages post-placement, as well as greater stability later on.

Aronsson explains: “Titanium is used as implant material due to its inertness and high acceptance by the body. Over the years, however, a wish for faster and more predictable integration with the bone has been driving research on the importance of the surface structural and chemical properties.”

The surface consists of a monolayer of multi-phosphonate molecules. These have a very high affinity to titanium dioxide, enabling a true covalent bond. The unique properties of this layer also make it extremely hydrophilic, which facilitates the colonisation of cells on the surface naturally. Research has even shown that blood vessels grow directly into the surface of the implant, which is unaffected by the oral environment and has been proved very stable in different pH levels.

,” Aronsson said. MIS was very excited to learn about these discoveries and immediately saw the potential for a major breakthrough. Having been seeking a suitable company to partner with, Aronsson and his team were equally enthusiastic about embarking on the commercialisation phase with a company able to achieve rapid implementation in clinical practice and with a strong position in the market to advance their product.

Most recently, MIS has launched a user experience project involving 250 participants worldwide, who will be placing ten implants each with the B+ surface and reporting their experiences. The results of studies conducted by Aronsson and his team are extremely promising and both partners are exploring future applications for this advancement.

Dr. Björn-Owe Aronsson, who developed this unique surface together with his team at Nano Bridging Molecules, has presented case studies in which B+ proved very efficient in maintaining the bone level over time. This is particularly beneficial for patients with compromised bone healing and poor blood supply. The specific bone-bonding properties of the surface have proved to produce greater fixation of the implant in the early stages post-placement, as well as greater stability later on.

Aronsson explains: “Titanium is used as implant material due to its inertness and high acceptance by the body. Over the years, however, a wish for faster and more predictable integration with the bone has been driving research on the importance of the surface structural and chemical properties.”

The surface consists of a monolayer of multi-phosphonate molecules. These have a very high affinity to titanium dioxide, enabling a true covalent bond. The unique properties of this layer also make it extremely hydrophilic, which facilitates the colonisation of cells on the surface naturally. Research has even shown that blood vessels grow directly into the surface of the implant, which is unaffected by the oral environment and has been proved very stable in different pH levels.

,” Aronsson said. MIS was very excited to learn about these discoveries and immediately saw the potential for a major breakthrough. Having been seeking a suitable company to partner with, Aronsson and his team were equally enthusiastic about embarking on the commercialisation phase with a company able to achieve rapid implementation in clinical practice and with a strong position in the market to advance their product.

Most recently, MIS has launched a user experience project involving 250 participants worldwide, who will be placing ten implants each with the B+ surface and reporting their experiences. The results of studies conducted by Aronsson and his team are extremely promising and both partners are exploring future applications for this advancement.

Dr. Björn-Owe Aronsson, who developed this unique surface together with his team at Nano Bridging Molecules, has presented case studies in which B+ proved very efficient in maintaining the bone level over time. This is particularly beneficial for patients with compromised bone healing and poor blood supply. The specific bone-bonding properties of the surface have proved to produce greater fixation of the implant in the early stages post-placement, as well as greater stability later on.

Aronsson explains: “Titanium is used as implant material due to its inertness and high acceptance by the body. Over the years, however, a wish for faster and more predictable integration with the bone has been driving research on the importance of the surface structural and chemical properties.”

The surface consists of a monolayer of multi-phosphonate molecules. These have a very high affinity to titanium dioxide, enabling a true covalent bond. The unique properties of this layer also make it extremely hydrophilic, which facilitates the colonisation of cells on the surface naturally. Research has even shown that blood vessels grow directly into the surface of the implant, which is unaffected by the oral environment and has been proved very stable in different pH levels.
VITA Zahnfabrik to present innovative clinical solutions at IDS 2017

At the 2017 International Dental Show (IDS) in Cologne in Germany, VITA Zahnfabrik will present new process-safe solutions for highly aesthetic results, as well as efficient and smooth clinical workflows.

High-end aesthetics: VITA ENAMIC multiColor and Super Translucent

VITA ENAMIC has established itself as a solution for functional restorations since 2013. At this year’s IDS, the reliable material will attract attention with its integrated natural colour gradient in six layers, from the cervical area to incisal area: VITA ENAMIC multiColor.

The dual-ceramic–polymer network makes aesthetic single-tooth restorations in the anterior and molar regions possible. VITA ENAMIC ST (Super Translucent) is ideally suited for veneers, inlays and restorations in enamel. The solid material can be milled as usual and manufactured without any firing. It offers all of the clinical advantages of VITA ENAMIC: a pre-sintered, porous, fine-structured feldspathic ceramic block (86 per cent by weight) is infiltrated with a polymer (14 per cent by weight). Its thin layer thickness allows for both minimally invasive and non-invasive rehabilitation. Masticatory forces are absorbed owing to the dentine-like flexibility, while ceramic crack growth is stopped at the interface with the polymer network. In this manner, durable restorations are guaranteed.

VITA SMART.FIRE: Small furnace, large effect

VITA’s space-saving furnace for the dental practice allows for more efficient ceramic chairside restorations. The miniature vacuum furnace has been optimised for the requirements of chairside applications and the particular needs of dentists. Owing to its intuitive user interface, crystallisation and glazing can be realised without any special background knowledge. The intuitive “touch & fire” application enables the dentist to select the material and navigate through the menu easily. After try-in and grinding, CAD/CAM-fabricated feldspathic and glass ceramics can be finalised independently. Stressful polishing chairside can be avoided, while the quality of the surface is optimised. This furnace gives the dentist greater independence from the laboratory. The workflow for monolithic ceramic restorations remains in the dentist’s hands, from preparation, including intra-oral scans, to final insertion. The furnace makes treatment procedures more economical and is time-saving for patients.

Material-specific cementation that is easy, complete and systematic

Different indirect restorative materials follow various cementation protocols. The hydrofluoric acid may come from one supplier, the cementation composite from another and silane from yet another. This leads to full drawers and fridges resembling a rather messy storeroom. With the VITA ADIVA LUTING SOLUTIONS cementation system, reliable bond strength is ensured and orderly storage facilitated. The cementation system is specifically matched to all VITA materials and offers the complete range of provisional, self-adhesive and full-adhesive cementation. Furthermore, the systematic segmentation of the tray into “practitioner” and “assistant” provides a clear overview, particularly helpful in stressful situations. Its compact design makes the VITA ADIVA set a perfect space-saving companion that is always within reach. Moreover, VITA ADIVA is compatible with restorative materials from other manufacturers too.

For more information, visit VITA Zahnfabrik during IDS 2017 at Booth D 010 in Hall 10.1.
TODAY EXHIBITION GUIDE APP
Make exhibitor search a walkover

www.messeguide.today